Quantitative, Qualitative, and Spatial Evaluation of Groundwater Recharge in the Salt Basin, NM/TX

Beth Ann Eberle and Dr. Daniel Cadol

Salt Basin

- SE New Mexico
 + W Texas
- Semi-arid climate
- ■13,034 km²
- Partially within Basin and Range
- Mostly carbonate aquifers

Image from: https://geoinfo.nmt.edu/geoscience/research/home.cfml?id=98

Project Background

Sub-project components:

- Geophysical analysis
- Groundwater modeling

Groundwater recharge evaluation

Purpose:

- Evaluate groundwater availability and overall water budget in the Salt Basin
- Assess local sustainability of current groundwater usage
- Implications for future basin development

Previous recharge estimates

Author, Year	Recharge Estimate (acre-feet per year)
Chace and Roberts, 2004	100,000 to 240,000 (entire basin)
Bjorklund, 1957	<100,000 (entire basin)
Ashworth, 1995	90,000 to 100,000 (entire basin)
Hutchison, 2008	71,531 (entire basin)
Shomaker, 2010	61,723 (entire basin + Peñasco inflow)
Tillery, 2011	60,414 (northern basin)
DBS&A, 2010a	37,000 to 82,000 (entire basin)
Mayer, 1995	58,370 (entire basin)
Finch, 2002	54,943 (entire basin + Peñasco inflow)
Gates, 1980	48,000 (entire basin)
DBS&A, 2010b	26,710 (entire basin)
Sigstedt, 2016	6,000 to 12,000 (entire basin)

Recharge from Chemistry

- Abundances of environmental tracers throughout water wells of basin:
- Flow paths of groundwater
- Chemical evolution
- Velocities of groundwater movement

Suffote Concentrations (mg/L) Along Sacramento River Flow Path (5)

Flow Paths

Chemical Evolution

Chemical Evolution

Groundwater Velocities

PyRANA Estimate

Python Recharge Assessment for New Mexico Aquifers

- Developed by David Ketchum, Peter ReVelle, Esther Xu, Jake Ross, and Talon Newton starting in 2016
- Soil water balance model to constrain recharge estimates

Estimates evapotranspiration and runoff from input parameters

Future Estimates

Chloride mass balance:

- Atmospheric chloride as groundwater tracer
- Cl/Br ratio to distinguish source of chloride

Groundwater flow model:

- Finite-element, steady-state model
- Can use radiocarbon ages to calibrate
- Can use Blaney-Criddle to estimate ET

Head

Thank you

Any questions?

Blaney-Criddle

- Used by the New Mexico Office of the State Engineer (NM OSE)
- Estimates consumptive pumping use from Dell City irrigation district using NDVI active cells and local climate data
- Utilized in groundwater flow model

